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Background and Introduction

A spherical probability distribution is a probability distribution defined on the

d-dimensional hypersphere, denoted Sd.

Figure 1. Visualization of a spherical probability

distribution on S1 (the unit circle).

The field of optimal transport (OT) allows us to compare two probability

distributions and measure the distance between them. Existing distances that

accomplish this task include theWasserstein and Sinkhorn distances.

There is a wide range of applications where we need to compare spherical

probability distributions including astronomy, geophysics, meteorology,

cosmology, medical imaging, computer vision, and deep learning [1].

One of the main bottlenecks in OT theory is its high computational cost, with

Wasserstein’s O(n3 log n) runtime and Sinkhorn’s O(n2 log n) runtime [2]. This
high cost renders them impractical for use in large-scale settings.

This work introduces a numerically efficient distance to compare spherical

probability distributions, the Stereographic Spherical Sliced Wasserstein (S3W)

distance. We demonstrate the superior performance, both in terms of speed

and accuracy, of the proposed distance when used across a variety of deep

learning problems.

Preliminaries

The stereographic projection φ : Sd \ {sn} → Rd is a bijective, smooth, and

conformal transformation from the hypersphere Sd (excluding the “north pole”
sn = (0, . . . , 0, 1)) into a hyperplane Rd.

The generalized Radon transform (GRT) of a probability distribution µ ∈ P(Rd)
maps µ to its 1D marginals over hypersurfaces given by the level sets of a
defining function g : Rd× (Rd′ \ {0}) → R. Formally, G(µ) = ν ∈ P(R×Sd′−1) s.t.∫

R×Sd′−1
ψ(t, θ) dν(t, θ) =

∫
Rd

(G∗(ψ))(x) dµ(x) (1)

for any test function ψ ∈ C0(R × Sd′−1).
Here, G∗ is the dual operator of G satisfying G(µ)(ψ) = µ(G∗(ψ)). We denote a
specific slice of the resulting measure as G(µ)θ = g(·, θ)#µ, the pushforward
measure of µ w.r.t. g(·, θ) for a fixed θ. The level sets onto which we project µ
can be characterized by Ht,θ = {x ∈ Rd | g(x, θ) = t}.
For probability distributions µ, ν ∈ P(M), the p-Wasserstein distance is

W p
p (µ, ν) := inf

γ∈Γ(µ,ν)

∫
M×M

dp(x, y)dγ(x, y). (2)

Here, γ ∈ P(M ×M) is any joint probability distribution with marginals µ and
ν. When µ, ν ∈ P(R), with quantile functions F−1

µ and F−1
ν , Eq. (2) simplifies to

W p
p (µ, ν) =

∫ 1

0
‖F−1

µ (t) − F−1
ν (t)‖pdt. (3)

Stereographic Spherical Radon Transform

Definition 1. We introduce the novel stereographic spherical Radon trans-

form of a spherical probability distribution µ ∈ P(Sd \ {sn}) as
SG(µ) := G(φ#µ) ∈ P(R × Sd′−1), (4)

where φ#µ is the pushforward measure of µ w.r.t. φ.
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Figure 2. (a) Depiction of stereographic projection from S2 to R2. (b) The stereographic Radon

transform integration surfaces on S2, i.e., the level sets of the defining function g(x, θ) = 〈φ(x), θ〉
for a fixed θ ∈ Rd. (c) The generalized stereographic Radon transform integration surfaces on the

sphere, i.e. the level sets of the defining function g(x, θ) = 〈h ◦ φ(x), θ〉 for a fixed θ ∈ Rd′
.

S3WDistances

For two spherical probability distributions µ, ν ∈ P(Sd \ {sn}), we define their
S3W distance as:

S3W p
G,p(µ, ν) :=

∫
Sd′−1

W p
p (SG(µ)θ,SG(ν)θ) dσd′(θ) (5)

where σd′ = Unif(Sd′−1). Note that SG(µ)θ,SG(ν)θ ∈ P(R), and so the
p-Wasserstein distance can be computed efficiently with Eq. (3).
We introduce a rotationally invariant variation of S3W, the RI-S3W distance,

given as:

RI-S3WG,p(µ, ν) := ER∼ω[S3WG,p(R#µ,R#ν)] (6)

where ω is the Haar measure on the special orthogonal group SO(d + 1) and
R ∈ SO(d + 1) is a rotation matrix.

Theorem 1. S3WG,p(·, ·) and RI-S3WG,p(·, ·) are well-defined and are generally

pseudo-metrics on Pp(Sd\{sn}). When the defining function g(x, θ) = 〈h◦φ(x), θ〉
for h injective, S3WG,p(·, ·) and RI-S3WG,p(·, ·) define metrics on Pp(Sd \ {sn}).

Numerically, we amortize the cost of generating the rotation matrices in Eq.

(6) by presampling a rotation pool which we then subsample for every
distance calculation. We call this implementation the ARI-S3W distance.

Experiment: Runtime Comparison

The theoretical runtime of computing S3W is O(LN(d + logN)) and that of
RI-S3W is O(NR(d3 +Nd2 + LN(d + logN)) , where N is the number of

samples, L is the number of level sets considered, d is the dimension, and NR is

the number of rotations used. The NR · d3 term is avoided by amortizing the

generation of rotation matrices as in ARI-S3W.

We empirically benchmark the runtime of our distances against the Sliced

Wasserstein (SW)∗ [3], Spherical Sliced Wasserstein (SSW) [1], Wasserstein,

and Sinkhorn distances.
∗SW is designed for Euclidean distributions, not spherical distributions. We provide it primarily for runtime comparison.
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Figure 3. Empirical runtime comparison of ARI-S3W , RI-S3W , S3W , SW , SSW1 (with level

median formula), SSW2 with binary search (BS), SSW2 with antipodal closed form (only applicable

for uniform distribution), Wasserstein, and Sinkhorn. The results demonstrate the improved

runtime and scalability of our proposed distances over the benchmark distances.

Experiment: Gradient Flows on Sphere
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Figure 4. Performance of different

distances when used as loss in

gradient flow to learn target mixture of

12 von Mises-Fisher distributions. We

test SSW with 2 learning rates and

RI-S3W with 1 and 5 rotations. We

use 30 rotations subsampled from a

pool of size 1000 for ARI-S3W . The
top plot demonstrates that ARI-S3W

obtains the best performance, and the

bottom plot demonstrates that S3W

converges the fastest.

Experiment: Self-Supervised Learning (SSL)
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Figure 5. Visualization of the learned latent space embeddings (with S2 as latent space) of the 10

classes in the CIFAR-10 image dataset when each distance is used to train an image classification

model with SSL. The resulting classification accuracy on test data (%) and the time per epoch of

SSL pretraining (s) is given in parenthesis, with the highest accuracy and fastest runtime in bold.

The result of training a fully supervised model is given as a baseline for comparison. The plots

demonstrate the improved latent space utilization and cluster separation when our proposed

distances are used, which is reflected in the improved accuracies.

Experiment: Earth Density Estimation

Quakes Floods Fire

Method Quake ↓ Flood ↓ Fire ↓

SW 1.12 ± 0.07 1.58 ± 0.02 0.55 ± 0.18

SSW 0.84 ± 0.05 1.26 ± 0.03 0.24 ± 0.18

S3W 0.88 ± 0.09 1.33 ± 0.05 0.36 ± 0.04

RI-S3W 0.79 ± 0.07 1.25 ± 0.02 0.15 ± 0.06

ARI-S3W 0.78 ± 0.06 1.24 ± 0.04 0.10 ± 0.04

Figure 6. Use of distances as loss in normalizing

flow model for density estimation of natural

disaster events (earthquakes, floods, and fires).

The table reports the negative log-likelihood of

the learned distribution evaluated on test data

and the figures visualize the learned distribution

on each dataset when ARI-S3W is used.

Conclusions

We introduce a new set of distances for spherical probability distributions

and prove that the proposed distances indeed comprise metrics on the

space of spherical probability distributions.

We then show that the distances yield superior performance, both in terms

of speed and accuracy, over existing alternatives through runtime, gradient

flow, SSL, and earth density estimation experiments.
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