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Background and Introduction

= A spherical probability distribution is a probability distribution defined on the
d-dimensional hypersphere, denoted S¢.

Figure 1. Visualization of a spherical probability
distribution on S* (the unit circle).

= The field of optimal transport (OT) allows us to compare two probability
distributions and measure the distance between them. Existing distances that
accomplish this task include the Wasserstein and Sinkhorn distances.

= There is a wide range of applications where we need to compare spherical
probability distributions including astronomy, geophysics, meteorology,
cosmology, medical imaging, computer vision, and deep learning [1].

= One of the main bottlenecks in OT theory is its high computational cost, with
Wasserstein's |O(n’ log n) runtime and Sinkhorn's O(n*logn) runtime [2]. This
high cost renders them impractical for use in large-scale settings.

= This work introduces a numerically efficient distance to compare spherical

probability distributions, the Stereographic Spherical Sliced Wasserstein (S3W)

distance. We demonstrate the superior performance, both in terms of speed
and accuracy, of the proposed distance when used across a variety of deep
learning problems.

Preliminaries
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Figure 2. (a) Depiction of stereographic projection from S? to R?. (b) The stereographic Radon
transform integration surfaces on S?, i.e., the level sets of the defining function g(z, 8) = (¢(x), 6)
for a fixed 8 € R%. (c) The generalized stereographic Radon transform integration surfaces on the
sphere, i.e. the level sets of the defining function g(z, ) = (h o ¢(x), 8) for a fixed # € R?.

¢: Sd\ {sn}— R?

= The stereographic projection ¢ : S?\ {s,,} — R%is a bijective, smooth, and
conformal transformation from the hypersphere S¢ (excluding the “north pole”
s, = (0,...,0,1)) into a hyperplane R

= The generalized Radon transform (GRT) of a probability distribution u € P(R?)

maps p to its 1D marginals over hypersurfaces given by the level sets of a

defining function g : RY x (R¥\ {0}) — R. Formally, G(u) = v € P(R x S* 1) s.t.
/]Rxgd’l W(t,0)dv(t,0) = / (G (V))(x) du(x) (1)

Rd
for any test function ¢ € Cy(R x S¥~1).
Here, G* is the dual operator of G satisfying G(u)(v) = u(G*(v)). We denote a
specific slice of the resulting measure as G(u)s = g(+, 0) £, the pushforward
measure of u w.r.t. g(-,0) for a fixed 6. The level sets onto which we project u
can be characterized by H;y = {x € R?| g(x,0) = t}.

= For probability distributions u, v € P(M), the p-Wasserstein distance is

W)= inf [ @) 2)

el (p,v)
Here, v € P(M x M) is any joint probability distribution with marginals p and

v. When p, v € P(R), with quantile functions F, " and F,', Eq. (2) simplifies to
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Stereographic Spherical Radon Transform

Definition 1. We introduce the novel stereographic spherical Radon trans-
form of a spherical probability distribution 1 € P(S%\ {s,}) as

Sg(n) = Gldyn) € PR x S, (4)
where ¢up is the pushforward measure of p w.r.t. ¢.
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Website: abi-kothapalli.github.io/s3w/
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S3W Distances
 For two spherical probability distributions u, v € P(S*\ {s,}), we define their
S3W distance as:
S3We (s v) == [ WJ(Sg(p)e, Sg(v)e) dow(0) (5)

gd'-1
where o4 = Unif(S?~!). Note that Sg(i)g, Sg(v)g € P(R), and so the
p-Wasserstein distance can be computed efficiently with Eq. (3).
= We introduce a rotationally invariant variation of S3W, the RI-S3W distance,
given as:

RI-S3Wg (1, V) := Epew|S3Wg p( Ry, Ryv))] (6)

where w iIs the Haar measure on the special orthogonal group SO(d + 1) and
R € SO(d + 1) is a rotation matrix.

‘Theorem 1. S3Wg (-, -) and RI-S3Wg (-, ) are well-defined and are generally
pseudo-metrics on P,(S\ {s,,}). When the defining function g(z,0) = (hog¢(z), 0)
for h injective, S3Wg (-, ) and RI-S3Wg. (-, ) define metrics on P,(S%\ {s,}).

~
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= Numerically, we amortize the cost of generating the rotation matrices in Eq.
(6) by presampling a rotation pool which we then subsample for every
distance calculation. We call this implementation the ARI-S3W distance.

Experiment: Runtime Comparison

= The theoretical runtime of computing SSW is O(LN(d 4 log N))| and that of

RI-SBW is O(Ng(d® + Nd* 4+ LN(d +log N)), where N is the number of
samples, L is the number of level sets considered, d is the dimension, and Ng is
the number of rotations used. The Np - d° term is avoided by amortizing the
generation of rotation matrices as in ARI-S3W.

= We empirically benchmark the runtime of our distances against the Sliced
Wasserstein (SW)* [3], Spherical Sliced Wasserstein (SSW) [1], Wasserstein,
and Sinkhorn distances.

*SW is designed for Euclidean distributions, not spherical distributions. We provide it primarily for runtime comparison.
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Figure 3. Empirical runtime comparison of ARI-S3W, RI-S3W, S3W, SW, SSW; (with level
median formula), SSW5 with binary search (BS), SSW5 with antipodal closed form (only applicable

for uniform distribution), Wasserstein, and Sinkhorn. The results demonstrate the improved
runtime and scalability of our proposed distances over the benchmark distances.
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Experiment: Gradient Flows on Sphere

Figure 4. Performance of different

'g —2- distances when used as loss In
e : _ gradient flow to learn target mixture of
S _4 12 von Mises-Fisher distributions. We
\ﬁ—— . .
5 100 500 300 260 =0g  test SSW vy|th 2 learning rates and
lteration RI-S3W with 1 and 5 rotations. We
_ © SSW(LR=0.01)  yse 30 rotations subsampled from a
N D] SSW (LR=0.05) :
= — S3W pool of size 1000 for ARI-S3W. The
g .............................. s RI-S3W (1) top p|ot demonstrates that AR|-S3W
= —4- _ 2;;52\;\'\,\55()30) obtains the best performance, and the
0 20 40 60 80 bottom plot demonstrates that S3W
Runtime (s) converges the fastest.

Experiment: Self-Supervised Learning (SSL)
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Figure 5. Visualization of the learned latent space embeddings (with S* as latent space) of the 10
classes in the CIFAR-10 image dataset when each distance is used to train an image classification
model with SSL. The resulting classification accuracy on test data (%) and the time per epoch of
SSL pretraining (s) is given in parenthesis, with the highest accuracy and fastest runtime in bold.
The result of training a fully supervised model is given as a baseline for comparison. The plots
demonstrate the improved latent space utilization and cluster separation when our proposed
distances are used, which is reflected in the improved accuracies.

Experiment: Earth Density Estimation
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Method Quake | Flood | Fire | Figure 6. Use of d|st.ances.as IQSS in normalizing
flow model for density estimation of natural
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SW 112007 1.58+002 055+0.18  jic star events (earthquakes, floods, and fires).
SSW 0.84+005 1.26+0.03 0.24+0.18

The table reports the negative log-likelihood of
S3W 0.88£0.09 135+£005 036+004  the learned distribution evaluated on test data
RI-S3W 079007 1.25£002 015+£006  gnd the figures visualize the learned distribution
ARI-S3W 0.78+0.06 1.24+0.04 0.10zx0.04 on each dataset when ARI-S3W is used.

Conclusions

= \We introduce a new set of distances for spherical probability distributions
and prove that the proposed distances indeed comprise metrics on the
space of spherical probability distributions.

= We then show that the distances vyield superior performance, both in terms
of speed and accuracy, over existing alternatives through runtime, gradient
flow, SSL, and earth density estimation experiments.
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